Are Symbiotic Methanotrophs Key Microbes for N Acquisition in Paddy Rice Root?
نویسندگان
چکیده
The relationships between biogeochemical processes and microbial functions in rice (Oryza sativa) paddies have been the focus of a large number of studies. A mechanistic understanding of methane-nitrogen (CH4-N) cycle interactions is a key unresolved issue in research on rice paddies. This minireview is an opinion paper for highlighting the mechanisms underlying the interactions between biogeochemical processes and plant-associated microbes based on recent metagenomic, metaproteomic, and isotope analyses. A rice symbiotic gene, relevant to rhizobial nodulation and mycorrhization in plants, likely accommodates diazotrophic methanotrophs or the associated bacterial community in root tissues under low-N fertilizer management, which may permit rice plants to acquire N via N2 fixation. The amount of N fixed in rice roots was previously estimated to be approximately 12% of plant N based on measurements of (15)N natural abundance in a paddy field experiment. Community analyses also indicate that methanotroph populations in rice roots are susceptible to environmental conditions such as the microclimate of rice paddies. Therefore, CH4 oxidation by methanotrophs is a driving force in shaping bacterial communities in rice roots grown in CH4-rich environments. Based on these findings, we propose a hypothesis with unanswered questions to describe the interplay between rice plants, root microbiomes, and their biogeochemical functions (CH4 oxidation and N2 fixation).
منابع مشابه
Diversity of Cultivable Methane-Oxidizing Bacteria in Microsites of a Rice Paddy Field: Investigation by Cultivation Method and Fluorescence in situ Hybridization (FISH)
The diversity of cultivable methane-oxidizing bacteria (MOB) in the rice paddy field ecosystem was investigated by combined culture-dependent and fluorescence in situ hybridization (FISH) techniques. Seven microsites of a Japanese rice paddy field were the focus of the study: floodwater, surface soil, bulk soil, rhizosphere soil, root, basal stem of rice plant, and rice stumps of previous harve...
متن کاملDraft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field
N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input.
متن کاملEffects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root–Associated Bacteria
The effects of free-air carbon dioxide enrichment (FACE) and elevated soil and water temperature (warming) on the rice root-associated bacterial community were evaluated by clone library analysis of the 16S ribosomal RNA gene. Roots were sampled at the panicle initiation and ripening stages 41 and 92 days after transplanting (DAT), respectively. The relative abundances of the methanotrophs Meth...
متن کاملLow Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions
Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha(-1), respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN...
متن کاملواسنجی آبشویی نیترات و نوسانات سطح ایستابی در زمینهای شالیزاری با استفاده از نرمافزار DRAINMOD-N
Fertilizers in agriculture are potential sources of environmental pollution, especially in ground water quality and soil resources. Studying factors effective in water and nutrient transport through soil profile is helpful for nutrient management to minimize adverse impacts on environment and nitrate leaching below the root zone. In this study, the ground water level and nitrate leaching transp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbes and environments
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2016